Implementasi Self-Organizing Map Pada Covid-19 Untuk Menentukan Tingkat Sembuh Dan Kematian Menggunakan Matlab
Abstract
The Self-Organizing Map (SOM) method is an artificial neural network method introduced by professor Teuvo Kohonen in the 1980s, as a topological form of Unsupervised Artificial Neural Network (Unsupervised ANN) where the learning or supervision process is not supervised because of examples. the input is not labeled with a class. The application of the SOM method is used to group geo-referenced data that integrates the visualization of the output space in cartographic repression through color, and explores the use that is calculated according to the distance in the best input space between locations. The use of MATLAB programming as an intermediary for data visualization can fulfill the completion of a research.
Full Text:
Diterima: Revisi MayorReferences
Tonsuk, D., & الله, ب. م. ع. (1970). No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. Kaos GL Dergisi, 2(October), 765–770.
Anis, Y., & Isnanto, R. R. (2014). Penerapan Metode Self-Organizing Map (SOM) Untuk Visualisasi Data Geospasial Pada Informasi Sebaran Data Pemilih Tetap (DPT). Jurnal Sistem Informasi Bisnis, 4(1). http://doi.org/10.21456/vol4iss1pp48-57
Utari, E. L., Listyalina, L., & Puspaningtyas, D. E. (2019). Aplikasi self-organizing mapping sebagai alat deteksi anemia pada citra sel darah merah. Jurnal Gizi Klinik Indonesia, 16(2), 64. http://doi.org/10.22146/ijcn.39560
Cahyono, B. (2016). Penggunaan Software Matrix Laboratory (Matlab) Dalam Pembelajaran Aljabar Linier. Phenomenon : Jurnal Pendidikan MIPA, 3(1), 45–62. http://doi.org/10.21580/phen.2013.3.1.174
Miljković, D. (2017). Brief Review of Self-Organizing Maps, 1252–1257.
Taşdemir, K., & Merényi, E. (2008). Cluster analysis in remote sensing spectral imagery through graph representation and advanced SOM visualization. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5255 LNAI(July 2014), 259–271. http://doi.org/10.1007/978-3-540-88411-8_25
Refbacks
- There are currently no refbacks.